%I
%S 14111,24617,28222,29767,32743,42059,45629,49234,59534,60691,65486,
%T 66641,69071,73373,84118,88639,88723,91258,97751,98159,105877,121382,
%U 125903,128027,129677,133282,136001,138142,140183,146507,146746,153851
%N Euler phi(n) / Carmichael lambda(n) = 34.
%t Select[ Range[2 10^5], EulerPhi[ # ] == 34CarmichaelLambda[ # ] &]
%o (PARI) {cmf(f)=if( ((f[1]==2)&&(f[2]>2)),eulerphi(f[1]^f[2])/2, eulerphi(f[1]^f[2])) } {cl(f)= k=factor(f); l=1; for(x=1,omega(f),l=lcm(l,cmf([k[x,1], k[x,2]]))); l } {A0(n)=eulerphi(n)/cl(n)} for(x=1,30001, if(A0(x)==34,print1(x,",")))
%Y Continuation of A062373-A062377.
%K nonn
%O 1,1
%A Randall L. Rathbun, Jan 12 2002
%E More terms from _Robert G. Wilson v_, Jan 13 2002
|