login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066455 6*binomial(n,4)+5*binomial(n,2)-4*n+5. 3

%I

%S 1,2,8,25,65,146,292,533,905,1450,2216,3257,4633,6410,8660,11461,

%T 14897,19058,24040,29945,36881,44962,54308,65045,77305,91226,106952,

%U 124633,144425,166490,190996,218117,248033,280930,317000,356441,399457,446258,497060

%N 6*binomial(n,4)+5*binomial(n,2)-4*n+5.

%H Harry J. Smith, <a href="/A066455/b066455.txt">Table of n, a(n) for n=1,...,1000</a>

%H M. Azaola and F. Santos, <a href="http://personales.unican.es/santosf/Articulos/">The number of triangulations of the cyclic polytope C(n,n-4)</a>, Discrete Comput. Geom., 27 (2002), 29-48.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1)

%F G.f.: x*(1-3*x+8*x^2-5*x^3+5*x^4) / (1-x)^5 . - _R. J. Mathar_, Aug 07 2014

%t LinearRecurrence[{5, -10, 10, -5, 1}, {1, 2, 8, 25, 65}, 50] (* _Vladimir Joseph Stephan Orlovsky_, Feb 21 2012 *)

%o (PARI) { for (n=1, 1000, a=6*binomial(n, 4) + 5*binomial(n, 2) - 4*n + 5; write("b066455.txt", n, " ", a) ) } \\ _Harry J. Smith_, Feb 15 2010

%o (MAGMA) [6*Binomial(n,4)+5*Binomial(n,2)-4*n+5: n in [1..40]]; // _Vincenzo Librandi_, Aug 07 2014

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, Jan 04 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 5 03:15 EDT 2020. Contains 333238 sequences. (Running on oeis4.)