login
Numbers with mu = 0 and infinitary MoebiusMu = +1 (sum of binary digits of prime exponents is even).
3

%I #13 Sep 16 2019 08:50:50

%S 8,12,18,20,27,28,32,36,44,45,48,50,52,63,64,68,75,76,80,92,98,99,100,

%T 112,116,117,120,124,125,144,147,148,153,162,164,168,171,172,175,176,

%U 188,196,207,208,212,216,225,236,242,243,244,245,261,264,268,270,272

%N Numbers with mu = 0 and infinitary MoebiusMu = +1 (sum of binary digits of prime exponents is even).

%H Amiram Eldar, <a href="/A066428/b066428.txt">Table of n, a(n) for n = 1..10000</a>

%e 28 is in this sequence because its prime decomposition is 2^2* 7^1, it is not squarefree and the binary digits of "2" and "1" add up to 2, an even number.

%t iMoebiusMu[ n_ ] := Switch[ MoebiusMu[ n ], 1, 1, -1, -1, 0, If[ OddQ[ Plus@@(DigitCount[ Last[ Transpose[ FactorInteger[ n ] ]], 2, 1 ]) ], -1, 1 ]]; Select[ Range[ 400 ], MoebiusMu[ # ]===0 && iMoebiusMu[ # ]===+1 & ]

%o (PARI) is(n)=my(f=factor(n)[,2]); #f && vecmax(f)>1 && vecsum(apply(hammingweight, f))%2==0 \\ _Charles R Greathouse IV_, Oct 15 2015

%Y Cf. A064179, A066427.

%K easy,nonn

%O 1,1

%A _Wouter Meeussen_, Dec 27 2001