%I
%S 1,1,2,2,3,2,4,3,3,4,4,3,5,4,4,3,6,5,4,4,4,6,6,3,6,4,6,6,4,4,6,7,6,4,
%T 6,3,6,8,6,5,5,6,6,4,8,6,6,4,7,7,4,8,8,4,6,4,6,8,8,7,5,6,8,3,6,6,10,8,
%U 4,6,6,7,8,6,6,6,10,6,4,6,7,8,8,5,9,6,8,8,4,6,6,6,8,10,10,2,8,9,6,5
%N 1 + number of antidivisors of n.
%C See A066272 for definition of antidivisor.
%H Jon Perry, <a href="http://www.users.globalnet.co.uk/~perry/maths">Antidivisors</a>
%H Jon Perry, <a href="/A066272/a066272a.html">The Antidivisor</a> [Cached copy]
%H Jon Perry, <a href="/A066272/a066272.html">The Antidivisor: Even More AntiDivisors</a> [Cached copy]
%e For example, n = 18: 2n1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {3,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the antidivisors of 12 are 4, 5, 7, 12. Therefore a(18) = 1 + 4 = 5.
%t antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n  1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 &], 2n/Select[ Divisors[2*n], OddQ[ # ] && # != 1 &]]], # < n &]; Table[ Length[ antid[n]] + 1, {n, 1, 100} ]
%Y Cf. A058838. Equals 1 + A066272(n).
%K nonn,easy
%O 1,3
%A _N. J. A. Sloane_, Dec 31, 2001
%E More terms from _Robert G. Wilson v_, Jan 03 2002
