

A066073


Composite numbers n such that sigma(n)  1 is prime.


14



6, 10, 14, 15, 20, 21, 24, 26, 30, 33, 34, 35, 38, 40, 44, 46, 51, 52, 55, 57, 58, 60, 63, 65, 74, 76, 78, 84, 85, 86, 88, 90, 92, 93, 96, 105, 111, 114, 117, 118, 120, 123, 124, 126, 130, 135, 136, 141, 143, 145, 147, 153, 155, 158, 161, 164, 166, 168, 172, 174
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Composite numbers n such that sigma(n) = sigma(p) has a solution in the primes p.  Jaroslav Krizek, Feb 03 2012
Complement of A000040 (primes) with respect to A248792 (numbers n such that sigma(n)  1 is prime).  Jaroslav Krizek, Nov 13 2014
Numbers n such that sigma(n)  1 is greater than n and prime.  Giuseppe Coppoletta, Dec 22 2014


LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1000


EXAMPLE

30, 46, 51, and 55 are in the sequence because each is a composite number n such that sigma(n)1 = 71, which is prime; 71 itself is excluded from the sequence by definition.


MAPLE

filter:= proc(n)
local s;
s:= numtheory:sigma(n)1;
s > n and isprime(s);
end proc:
select(filter, [$2..1000]); # Robert Israel, Dec 22 2014


MATHEMATICA

Do[s=1+DivisorSigma[1, m]; If[PrimeQ[s]&&!PrimeQ[m], Print[m]], {m, 1, 256}]


PROG

(PARI) isA066073(n)=!isprime(n)&&isprime(sigma(n)1) \\ Charles R Greathouse IV, Feb 20 2012
(Sage) [n for n in (2..174) if (sigma(n)1).is_prime() and sigma(n)1>n] # Giuseppe Coppoletta, Dec 22 2014


CROSSREFS

Cf. A000203, A058340, A066071, A066072, A066073, A066074, A066075, A066076, A066077, A066080, A248792.
Sequence in context: A069116 A063763 A115956 * A339438 A268376 A067582
Adjacent sequences: A066070 A066071 A066072 * A066074 A066075 A066076


KEYWORD

nonn


AUTHOR

Labos Elemer, Dec 03 2001


STATUS

approved



