Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Aug 18 2024 19:03:31
%S 4,6,9,15,26,48,88,168,323,627,1225,2406,4736,9351,18504,36655,72730,
%T 144450,287147,571208,1136971,2264215,4510963,8990492,17923944,
%U 35743996,71298762,142249762,283859985,566537515,1130886504,2257704401,4507834166,9001524190
%N The (2^n)-th composite number.
%C a(n) = A002808(A000079(n)).
%H Chai Wah Wu, <a href="/A065856/b065856.txt">Table of n, a(n) for n = 0..70</a>
%F a(n)-pi(a(n))-1 = 2^n.
%e composite[1] = composite[2^0] = 4, composite[2] = composite[2^1] = 6, composite[1024] = composite[2^10] = 1225, composite[1073741824] = composite[2^30] = 1130886504.
%t Composite[n_Integer] := Block[ {k = n + PrimePi[n] + 1 }, While[ k != n + PrimePi[k] + 1, k = n + PrimePi[k] + 1]; Return[ k ]]; Table[ Composite[2^n], {n, 0, 36} ]
%Y Cf. A033844, A002808, A062298, A000720, A065855.
%K nonn
%O 0,1
%A _Labos Elemer_, Nov 26 2001
%E More terms from _Robert G. Wilson v_, Nov 26 2001
%E Definition corrected by _N. J. A. Sloane_, Jun 07 2009
%E Further corrections from _Reinhard Zumkeller_, Jun 24 2009
%E a(32)-a(33) from _Chai Wah Wu_, Apr 16 2018