%I #12 May 11 2018 01:41:49
%S 1,1,3,3,7,30,51,42,15,145,753,1656,1995,1410,567,105,6631,39048,
%T 100704,149394,140475,86562,34566,8316,945,566641,3656439,10546413,
%U 17972598,20133921,15581349,8493555,3246642,841239,135135,10395
%N Triangle of Gandhi polynomial coefficients.
%C First column is A064624.
%H Michael Domaratzki, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Domaratzki/doma23.html">Combinatorial Interpretations of a Generalization of the Genocchi Numbers</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6.
%H D. Dumont, <a href="http://dx.doi.org/10.1016/0012-365X(72)90039-8">Sur une conjecture de Gandhi concernant les nombres de Genocchi</a>, (in French), Discrete Mathematics 1 (1972) 321-327.
%H D. Dumont, <a href="http://dx.doi.org/10.1215/S0012-7094-74-04134-9">Interprétations combinatoires des nombres de Genocchi</a>, Duke Math. J., 41 (1974), 305-318.
%H D. Dumont, <a href="/A001469/a001469_3.pdf">Interprétations combinatoires des nombres de Genocchi</a>, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
%F Let B(X, n) = X^3 (B(X+1, n-1) - B(X, n-1)), B(X, 1) = X^3; then the (i, j)-th entry is the table is the coefficient of X^(2+j) in B(X, i).
%e Triangle starts
%e 1;
%e 1, 3, 3;
%e 7, 30, 51, 42, 15;
%e 145, 753, 1656, 1995, 1410, 567, 105;
%e 6631 ...
%Y Cf. A036970, A064624, A065748
%K easy,nonn,tabf
%O 1,3
%A Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 16 2001