Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #32 Dec 06 2019 15:44:27
%S 1,2,4,5,8,9,13,16,18,20,25,26,29,36,37,41,45,49,50,61,64,72,73,74,80,
%T 100,101,104,109,113,116,117,121,122,128,137,144,146,148,157,169,173,
%U 180,181,193,196,200,208,218,225,229,234,242,244,256,257,261,277,281
%N Numbers n such that sum of divisors is a squarefree number.
%C Numbers n such that sigma(n) divides primorial(n), that is, A002110(n) mod A000203(n) = 0. - _Gary Detlefs_, May 02 2012
%H Harry J. Smith, <a href="/A065300/b065300.txt">Table of n, a(n) for n = 1..1000</a>
%F Solutions to |mu(sigma(x))| = 1.
%e For m=100, sigma(100) = 217 = 7*31.
%t Select[Range@ 300, SquareFreeQ@ DivisorSigma[1, #] &] (* or *)
%t Select[Range@ 300, Abs@ MoebiusMu@ DivisorSigma[1, #] == 1 &] (* _Michael De Vlieger_, Mar 18 2017 *)
%o (PARI) { n=0; for (m = 1, 10^9, if (abs(moebius(sigma(m)))==1, write("b065300.txt", n++, " ", m); if (n==1000, return)) ) } \\ _Harry J. Smith_, Oct 15 2009
%o (PARI) for(n=1, 300, if(issquarefree(sigma(n)), print1(n,", "))) \\ _Indranil Ghosh_, Mar 19 2017
%o (Python)
%o from sympy import mobius, divisor_sigma
%o from sympy.ntheory.factor_ import core
%o [n for n in range(1,301) if abs(mobius(divisor_sigma(n, 1))) == 1] #* or *#
%o [n for n in range(1,301) if core(divisor_sigma(n,1)) == divisor_sigma(n,1)] # _Indranil Ghosh_, Mar 19 2017
%Y Cf. A000203, A008683, A065299.
%K nonn
%O 1,2
%A _Labos Elemer_, Oct 29 2001