login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Semiprimes p1*p2 such that p2 mod p1 = 10, with p2 > p1.
1

%I #19 Apr 16 2018 19:11:37

%S 299,473,551,1037,1199,1271,1273,1313,1441,1651,1739,1817,2167,2279,

%T 2327,2651,2771,2813,2893,3193,3341,3349,3377,3439,3679,4103,4331,

%U 4829,4883,5071,5707,5977,6049,6059,6239,6281,6383,6523,6817,7031,7037,7097

%N Semiprimes p1*p2 such that p2 mod p1 = 10, with p2 > p1.

%H John Cerkan, <a href="/A064908/b064908.txt">Table of n, a(n) for n = 1..10000</a>

%o (Python)

%o from sympy import factorint

%o def is_A064908(n):

%o f = factorint(n)

%o return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 10) # _John Cerkan_, Apr 14 2018

%o (PARI) isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 10); \\ _Michel Marcus_, Apr 16 2018

%Y Cf. A001358 (p2 mod p1 = 0), A064899-A064911.

%K nonn

%O 1,1

%A _Patrick De Geest_, Oct 13 2001

%E Offset changed by _John Cerkan_, Apr 12 2018