Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 27 2022 09:22:56
%S 1,9,216,9720,699840,73483200,10581580800,1999918771200,
%T 479980505088000,142554210011136000,51319515604008960000,
%U 22016072194119843840000,11096100385836401295360000,6491218725714294757785600000,4362098983680006077231923200000
%N a(n) = 3^n*n!*(n+2)!/2!.
%H Harry J. Smith, <a href="/A064633/b064633.txt">Table of n, a(n) for n = 0..75</a>
%F Hypergeometric g.f.: (1-3*x)^(-3).
%F a(0)=1, a(n) = n!*subs(x=0, (d^n/dx^n)(-1/((3*x-1)^3))), n = 1, 2, ...
%F From _Amiram Eldar_, Sep 27 2022: (Start)
%F Sum_{n>=0} 1/a(n) = 6*BesselI(2,2/sqrt(3)).
%F Sum_{n>=0} (-1)^n/a(n) = 6*BesselJ(2,2/sqrt(3)). (End)
%t Table[3^n n! (n+2)!/2,{n,0,20}] (* _Harvey P. Dale_, Feb 25 2015 *)
%o (PARI) { for (n=0, 75, write("b064633.txt", n, " ", 3^n*n!*(n + 2)!/2) ) } \\ _Harry J. Smith_, Sep 20 2009
%Y Cf. A000244, A010791.
%K nonn
%O 0,2
%A _Karol A. Penson_, Oct 01 2001