login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064104 Primes p = p(k) such that p(k) + p(k+11) = p(k+1) + p(k+10) = p(k+2) + p(k+9) = p(k+3) + p(k+8) = p(k+4) + p(k+7) = p(k+5) + p(k+6). 0

%I

%S 137,55787,113131,179021,895789,1150649,3086003,4026103,4077559,

%T 8021753,8750857,12577063,14355559,19136527,19412863,20065961,

%U 21865339,22633141,25880177,30404971,33926159,38202173,41905891,42925699

%N Primes p = p(k) such that p(k) + p(k+11) = p(k+1) + p(k+10) = p(k+2) + p(k+9) = p(k+3) + p(k+8) = p(k+4) + p(k+7) = p(k+5) + p(k+6).

%e 137 + 193 = 139 + 191 = 149 + 181 = 151 + 179 = 157 + 173 = 163 + 167.

%t a = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Do[ a = Delete[ a, 1 ]; a = Append[ a, Prime[ n ] ]; If[ a[ [ 1 ] ] + a[ [ 12 ] ] == a[ [ 2 ] ] + a[ [ 11 ] ] == a[ [ 3 ] ] + a[ [ 10 ] ] == a[ [ 4 ] ] + a[ [ 9 ] ] == a[ [ 5 ] ] + a[ [ 8 ] ] == a[ [ 6 ] ] + a[ [ 7 ] ], Print[ a[ [ 1 ] ] ] ], {n, 1, 10^6} ]

%t okQ[n_]:=Length[Union[Take[n,6]+Reverse[Take[n,-6]]]]==1; Transpose[ Select[Partition[Prime[Range[2700000]],12,1],okQ]][[1]] (* _Harvey P. Dale_, Apr 25 2011 *)

%Y Cf. A022885.

%K easy,nonn

%O 1,1

%A _Robert G. Wilson v_, Sep 17 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 08:08 EDT 2019. Contains 328146 sequences. (Running on oeis4.)