%I
%S 1,3,6,21,50,108,364,987,1938,6150,17622,34776,121160,306852,549000,
%T 2178309,5701290,11197764,39083988,93031050,191708244,697884066,
%U 1836283246,3605645232,11442062750,32888033880,64700678454
%N Integers formed from the reduced residue sets of even numbers and Fibonacci numbers.
%C a(2n) = L(2n)*a(n), where L(2n) is the 2nth Lucas number = A000032(2n).
%F a(n) = Sum_{i  gcd(i, 2n)=1} Fib(i) (where Fib(i) = A000045[i])
%e The reduced residue set of 2*6 = 12 is {1,5,7,11}, thus a(6) = F_1 + F_5 + F_7 + F_11 = 108.
%p A063683 := [seq(A063683_as_sum(2*n), n=1..101)]; A063683_as_sum := proc(n) local i; RETURN(add((one_or_zero(igcd(n,i))*fibonacci(i)),i=1..(n1))); end; Yours, Antti Karttunen
%Y Cf. A054432, A054433, A050611.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jul 31 2001
