%I #14 Jun 13 2015 00:50:29
%S 1,15,47,131,343,863,2111,5055,11903,27647,63487,144383,325631,729087,
%T 1622015,3588095,7897087,17301503,37748735,82051071,177733631,
%U 383778815,826277887,1774190591,3800039423,8120172543,17314086911,36842766335,78248935423
%N T(3,n) with T(n,m) as in A063394.
%H Colin Barker, <a href="/A063396/b063396.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-18,20,-8)
%F For n>0, 1/4 * [(n+1)(n+2)2^n + 10(n+1)2^n + 6*2^n - 4]. - _Ralf Stephan_, May 08 2004
%F G.f.: -(20*x^4-52*x^3+40*x^2-8*x-1) / ((x-1)*(2*x-1)^3). - _Colin Barker_, May 27 2015
%t Join[{1},LinearRecurrence[{7,-18,20,-8},{15,47,131,343},30]] (* _Harvey P. Dale_, Jul 31 2014 *)
%o (PARI) Vec(-(20*x^4-52*x^3+40*x^2-8*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ _Colin Barker_, May 27 2015
%Y Cf. A063394, A063397, A063398.
%K nonn,easy
%O 0,2
%A _Floor van Lamoen_, Jul 16 2001