login
Dimension of the space of weight n cuspidal newforms for Gamma_1( 50 ).
0

%I #11 May 08 2023 04:55:16

%S -1,24,46,69,92,115,138,162,184,208,230,253,276,301,322,346,368,392,

%T 414,439,460,485,506,530,552,578,598,623,644,669,690,716,736,762,782,

%U 807,828,855,874,900,920,946,966,993,1012,1039,1058,1084

%N Dimension of the space of weight n cuspidal newforms for Gamma_1( 50 ).

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg1new.gp">Dimensions of the spaces S_k^{new}(Gamma_1(N))</a>

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>

%F From _Colin Barker_, Feb 25 2016: (Start)

%F a(n) = a(n-4) + a(n-6) - a(n-10) for n>13.

%F G.f.: -x^2*(1 -24*x -46*x^2 -69*x^3 -93*x^4 -91*x^5 -93*x^6 -69*x^7 -46*x^8 -24*x^9 +x^10) / ((1 -x)^2*(1 +x)^2*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)).

%F (End)

%K sign

%O 2,2

%A _N. J. A. Sloane_, Jul 14 2001