login
Eighth column (r=7) of FS(5) staircase array A062985.
2

%I #26 Aug 18 2024 08:27:50

%S 5,30,110,315,771,1688,3396,6390,11385,19382,31746,50297,77415,116160,

%T 170408,245004,345933,480510,657590,887799,1183787,1560504,2035500,

%U 2629250,3365505,4271670,5379210,6724085,8347215

%N Eighth column (r=7) of FS(5) staircase array A062985.

%C In the Frey-Sellers reference this sequence is called {(n+2) over 7}_{4}, n >= 0.

%H Harry J. Smith, <a href="/A062990/b062990.txt">Table of n, a(n) for n = 0..1000</a>

%H D. D. Frey and J. A. Sellers, <a href="http://www.fq.math.ca/Scanned/39-2/frey.pdf">Generalizing Bailey's generalization of the Catalan numbers</a>, The Fibonacci Quarterly, 39 (2001) 142-148.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).

%F a(n) = A062985(n+2, 7) = (n+1)*(n+2)*(n+3)*(n^4 + 29*n^3 + 326*n^2 + 1744*n + 4200)/7!.

%F G.f.: N(5;1, x)/(1-x)^8 with N(5;1, x)= 5-10*x+10*x^2-5*x^3+x^4 = (1-(1-x)^5)/x polynomial of second row of A062986.

%F a(n) = binomial(n+7,n) - binomial(n+2,n). - _Zerinvary Lajos_, Jun 23 2006

%p [seq((binomial(n+7,n)-binomial(n+2,n)),n=1..29)]; # _Zerinvary Lajos_, Jun 23 2006

%t Table[Binomial[n+7,n]-Binomial[n+2,n],{n,30}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{5,30,110,315,771,1688,3396,6390},30] (* _Harvey P. Dale_, Jun 09 2016 *)

%o (PARI) { for (n=0, 1000, m=n + 1; a=binomial(m + 7, m) - binomial(m + 2, m); write("b062990.txt", n, " ", a) ) } \\ _Harry J. Smith_, Aug 15 2009

%Y Partial sums of A062989.

%K nonn,easy

%O 0,1

%A _Wolfdieter Lang_, Jul 12 2001

%E More terms from _Zerinvary Lajos_, Jun 23 2006