Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Sep 17 2024 09:34:22
%S 4,12,25,64,159,411,1068,2808,7423,19717,52529,140251,375015,1003770,
%T 2688570,7204696,19313075,51782613,138861732,372414289,998851473,
%U 2679146955,7186319506,19276417059,51707411684,138702360471
%N (1-2*cos(1/11*Pi))^n+(1+2*cos(2/11*Pi))^n+(1-2*cos(3/11*Pi))^n+(1+2*cos(4/11*Pi))^n+(1-2*cos(5/11*Pi))^n.
%C From _L. Edson Jeffery_, Apr 20 2011: (Start)
%C Let U be the unit-primitive matrix (see [Jeffery])
%C U = U_(11,2) =
%C (0 0 1 0 0)
%C (0 1 0 1 0)
%C (1 0 1 0 1)
%C (0 1 0 1 1)
%C (0 0 1 1 1).
%C Then a(n) = Trace(U^(n+1)). Evidently this is one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix U_(N,r) (0 < r < floor(N/2)) and for which the closed-form expression for a(n) is derived from the eigenvalues of U_(N,r). (End)
%C a(n) = A(n;1), where A(n;d), d in C, is the sequence of polynomials defined in Witula's comments to A189235 (see also Witula-Slota's paper for compatible sequences). - _Roman Witula_, Jul 26 2012
%D R. Witula, D. Slota, Quasi-Fibonacci Numbers of Order 11, 10 (2007), Article 07.8.5.
%H Harry J. Smith, <a href="/A062883/b062883.txt">Table of n, a(n) for n=1,...,200</a>
%H L. E. Jeffery, <a href="/wiki/User:L._Edson_Jeffery/Unit-Primitive_Matrices">Unit-primitive matrices</a>
%H R. Wituła, D. Słota, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Slota2/slota99.html">Quasi-Fibonacci Numbers of Order 11</a>, Journal of Integer Sequences, Vol. 10 (2007), Article 07.8.5
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4, -2, -5, 2, 1).
%F G.f.: x*(4-4*x-15*x^2+8*x^3+5*x^4)/(1-4*x+2*x^2+5*x^3-2*x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
%F -A062883 = series expansion of (5-8*x-15*x^2+4*x^3+4*x^4)/(1-2*x-5*x^2+2*x^3+4*x^4+x^5) at x=infinity. (See also A189236.) - _L. Edson Jeffery_, Apr 20 2011
%F Also, a(n) = Sum_{k = 1..5} ((w_k)^2-1)^(n+1), w_k = 2*(-1)^(k-1)*cos(k*Pi/11), in which the polynomials {(w_k)^2-1} give the spectrum of the matrix U_(11,2) above. - _L. Edson Jeffery_, Apr 20 2011
%p Digits := 1000:q := seq(floor(evalf((1-2*cos(1/11*Pi))^n+(1+2*cos(2/11*Pi))^n+(1-2*cos(3/11*Pi))^n+(1+2*cos(4/11*Pi))^n+(1-2*cos(5/11*Pi))^n)),n=1..50);
%t a[n_] := (1 - 2*Cos[Pi/11])^n + (2*Cos[(2*Pi)/11] + 1)^n + (1 - 2*Sin[Pi/22])^n + (2*Sin[(3*Pi)/22] + 1)^n + (1 - 2*Sin[(5*Pi)/22])^n; Table[a[n] // FullSimplify, {n, 1, 26}] (* _Jean-François Alcover_, Mar 26 2013 *)
%t u = {{0, 0, 1, 0, 0}, {0, 1, 0, 1, 0}, {1, 0, 1, 0, 1}, {0, 1, 0, 1, 1}, {0, 0, 1, 1, 1}}; a[n_] := Tr[MatrixPower[u, n]]; Table[a[n], {n, 1, 26}] (* _Jean-François Alcover_, Oct 16 2013, after _L. Edson Jeffery_ *)
%o (PARI) { default(realprecision, 200); for (n=1, 200, a=(1 - 2*cos(1/11*Pi))^n + (1 + 2*cos(2/11*Pi))^n + (1 - 2*cos(3/11*Pi))^n + (1 + 2*cos(4/11*Pi))^n + (1 - 2*cos(5/11*Pi))^n; write("b062883.txt", n, " ", round(a)) ) } \\ _Harry J. Smith_, Aug 12 2009
%Y Cf. A033304, A062882, A189236.
%K easy,nonn
%O 1,1
%A _Vladeta Jovovic_, Jun 27 2001
%E G.f. proposed by Maksym Voznyy checked and corrected by _R. J. Mathar_, Sep 16 2009
%E More terms from _Sascha Kurz_, Mar 24 2002