Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Jul 03 2018 21:20:47
%S 1,1,2,2,2,2,3,2,2,2,3,2,3,3,4,2,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,2,2,
%T 3,2,3,3,4,4,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,2,2,3,2,
%U 3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4
%N Maximum number of ones in the representation of n in any base.
%e a(11)=3 since 11 in base 2 is 1011, containing 3 ones.
%p seq(max(numboccur(convert(i,base,2),1), numboccur(convert(i,base,3),1), numboccur(convert(i,base,4),2), numboccur(convert(i,base,5),1), numboccur(convert(i,base,6),1), numboccur(convert(i,base,7),1), numboccur(convert(i,base,8),1), numboccur(convert(i,base,9),1), numboccur(convert(i,base,10),1), numboccur(convert(i,base,11),1), numboccur(convert(i,base,12),1), numboccur(convert(i,base,13),1), numboccur(convert(i,base,14),1), numboccur(convert(i,base,15),1), numboccur(convert(i,base,16),1), numboccur(convert(i,base,17),1)),i=1..200);
%o (PARI) ones(n,b)=my(s); while(n,if(n%b==1,s++);n\=b); s
%o a(n)=if(n<3,return(1)); my(m=hammingweight(n),b=2); while(b++^(m-1)<n,m=max(m, ones(n,b)));m \\ _Charles R Greathouse IV_, Mar 17 2013
%K base,easy,nonn
%O 1,3
%A _Erich Friedman_, Jul 21 2001
%E Maple code and more terms from Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Oct 10 2001