login
Number of cyclic subgroups of Chevalley group A_n(4) (the group of nonsingular n X n matrices over GF(4) ).
3

%I #9 Aug 07 2022 07:50:31

%S 2,74,37820,332797040,42906753609728,96807463594555409408,

%T 3287060262175777407524421632,1849558511978449242738396356403003392,

%U 16381469636294717667541649667987962803817283584,2439141663752697521176587375190791943802198154311477755904

%N Number of cyclic subgroups of Chevalley group A_n(4) (the group of nonsingular n X n matrices over GF(4) ).

%F a(n) = Sum_{d} |{g element of A_n(4): order(g)=d}| / phi(d), where phi is the Euler totient function. - _Sean A. Irvine_, Aug 07 2022

%Y Cf. A062250, A058502, A053291, A053660.

%K nonn

%O 1,1

%A Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001

%E More terms from _Vladeta Jovovic_, Jul 05 2001

%E More terms from _Sean A. Irvine_, Aug 07 2022