This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062318 Numbers of the form 3^m - 1 or 2*3^m - 1; i.e., the union of sequences A048473 and A024023. 39

%I

%S 0,1,2,5,8,17,26,53,80,161,242,485,728,1457,2186,4373,6560,13121,

%T 19682,39365,59048,118097,177146,354293,531440,1062881,1594322,

%U 3188645,4782968,9565937,14348906,28697813,43046720,86093441,129140162

%N Numbers of the form 3^m - 1 or 2*3^m - 1; i.e., the union of sequences A048473 and A024023.

%C WARNING: The offset of this sequence has been changed from 0 to 1 without correcting the formulas and programs, many of them correspond to the original indexing a(0)=0, a(1)=1, ... - _M. F. Hasler_, Oct 06 2014

%C Numbers n such that no entry in n-th row of Pascal's triangle is divisible by 3, i.e., such that A062296(n) = 0.

%C The base 3 representation of these numbers is 222...222 or 122...222.

%C a(n+1) is the smallest number with ternary digit sum = n: A053735(a(n+1)) = n and A053735(m) <> n for m < a(n+1). - _Reinhard Zumkeller_, Sep 15 2006

%C A138002(a(n)) = 0. - _Reinhard Zumkeller_, Feb 26 2008

%C Also, number of terms in S(n), where S(n) is defined in A114482. - _N. J. A. Sloane_, Nov 13 2014

%C a(n+1) is also the Moore lower bound on the order of a (4,g)-cage. - _Jason Kimberley_, Oct 30 2011

%H Vincenzo Librandi, <a href="/A062318/b062318.txt">Table of n, a(n) for n = 1..1000</a>

%H Gy. Tasi and F. Mizukami, <a href="http://dx.doi.org/10.1023/A:1019163812482">Quantum algebraic-combinatoric study of the conformational properties of n-alkanes</a>, J. Math. Chemistry, 25, 1999, 55-64 (see p. 60).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3).

%F a(n) = 2*3^(n/2-1)-1 if n is even; a(n) = 3^(n/2-1/2)-1 if n is odd. - _Emeric Deutsch_, Feb 03 2005, offset updated

%F a(n) = a(n-1)+3*a(n-2)-3*a(n-3). Differences: A108411. - _Paul Curtz_, Feb 21 2008

%F G.f.: x^2*(1+x)/((1-x)*(1-3*x^2)). - _Colin Barker_, Apr 02 2012

%F a(2n+1) = 3*a(2n-1) + 2; a(2n) = ( a(2n-1) + a(2n+1) )/2. See A060647 for case where a(1)= 1. - _Richard R. Forberg_, Nov 30 2013

%F a(n) = 2^((1+(-1)^n)/2) * 3^((2*n-3-(-1)^n)/4) - 1. - _Luce ETIENNE_, Aug 29 2014

%e The first rows in Pascal's triangle with no multiples of 3 are:

%e row 0: 1;

%e row 1: 1,1;

%e row 2: 1,2,1;

%e row 5: 1,5,10,10,5,1;

%e row 8: 1,8,28,56,70,56,28,8,1;

%p A062318 :=proc(n)

%p if n mod 2 = 1 then

%p 3^((n-1)/2)-1

%p else

%p 2*3^(n/2-1)-1

%p fi

%p end proc:

%p seq(A062318(n), n=1..37); # _Emeric Deutsch_, Feb 03 2005, offset updated

%t CoefficientList[Series[x^2*(1+x)/((1-x)*(1-3*x^2)),{x,0,40}],x] (* _Vincenzo Librandi_, Apr 20 2012 *)

%o (MAGMA) I:=[0, 1, 2]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2)-3*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Apr 20 2012

%o (PARI) a(n)=3^(n\2)<<bittest(n,0)-1 \\ [Program corresponds to offset=0, a(0)=0, a(1)=1.] - _M. F. Hasler_, Oct 06 2014

%Y Cf. A062296, A024023, A048473, A114482.

%Y Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), this sequence (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - _Jason Kimberley_, Oct 30 2011

%Y Cf. A037233 (actual order of a (4,g)-cage).

%Y Smallest number whose base b sum of digits is n: A000225 (b=2), this sequence (b=3), A180516 (b=4), A181287 (b=5), A181288 (b=6), A181303 (b=7), A165804 (b=8), A140576 (b=9), A051885 (b=10).

%K nonn,easy

%O 1,3

%A Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 05 2001

%E More terms from _Emeric Deutsch_, Feb 03 2005

%E Entry revised by _N. J. A. Sloane_, Jul 29 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 01:46 EST 2019. Contains 329850 sequences. (Running on oeis4.)