login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; a(n) = sum of the sum and the product of all previous terms.
2

%I #18 Apr 09 2014 10:16:38

%S 1,2,5,18,206,37312,1383566504,1914204327753559888,

%T 3664178205741957271429583378492509856,

%U 13426201923434349344563612023870972836592501276745812341399323779519061312

%N a(1) = 1; a(n) = sum of the sum and the product of all previous terms.

%C The next term has 147 digits. [From Harvey P. Dale, Nov 01 2011]

%H Reinhard Zumkeller, <a href="/A062097/b062097.txt">Table of n, a(n) for n = 1..13</a>

%F For n>=4, a(n) = 2*a(n-1) + a(n-2)*(a(n-1) - 2*a(n-2))*(a(n-1) -1)/(a(n-2) -1). - _Leroy Quet_, Nov 27 2007

%e a(4)=18 as 18 = {1+2+5} + {1*2*5}, where 1, 2, 5 are the previous terms.

%t lf[l_List] := Append[l, Plus @@ l + Times @@ l]; Nest[f, {1}, 9] (* _Harvey P. Dale_, Nov 01 2011 *) and modified by _Robert G. Wilson v_, Sep 03 2012

%o (PARI) A062097(n,s=0,p=1)={for(n=2,n,p*=-s+s+=s+p);p+s} \\ - _M. F. Hasler_, Sep 03 2012

%o (Haskell)

%o a062097 n = a062097_list !! (n-1)

%o a062097_list = 1 : f 1 1 where

%o f u v = w : f (u + w) (v * w) where w = u + v

%o -- _Reinhard Zumkeller_, Mar 20 2014

%Y Cf. A057194.

%K nonn,easy

%O 1,2

%A _Amarnath Murthy_, Jun 19 2001

%E Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 19 2001

%E More terms from Harvey P. Dale, Nov 01 2011