login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061223
a(n) = n^3 + (n + 1)^4 + (n + 2)^5.
1
33, 260, 1113, 3408, 8465, 18228, 35385, 63488, 107073, 171780, 264473, 393360, 568113, 799988, 1101945, 1488768, 1977185, 2585988, 3336153, 4250960, 5356113, 6679860, 8253113, 10109568, 12285825, 14821508, 17759385, 21145488, 25029233
OFFSET
0,1
FORMULA
From Bruno Berselli, Aug 05 2011: (Start)
G.f.: (33 + 62*x + 48*x^2 - 30*x^3 + 7*x^4)/(1-x)^6.
a(n) = (n+1)*(n^4 + 10*n^3 + 35*n^2 + 51*n + 33).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). (End)
E.g.f.: (33 + 227*x + 313*x^2 + 136*x^3 + 21*x^4 + x^5)*exp(x). - Stefano Spezia, Nov 02 2018
EXAMPLE
For n=1, a(1) = 1 + 2^4 + 3^5 = 1 + 16 + 243 = 260.
MAPLE
seq(k^3+(k+1)^4+(k+2)^5, k=0..30); # Muniru A Asiru, Nov 02 2018
MATHEMATICA
#[[1]]^3+#[[2]]^4+#[[3]]^5&/@Partition[Range[0, 30], 3, 1] (* Harvey P. Dale, Jul 23 2012 *)
Table[(n+1)*(n^4 +10*n^3 +35*n^2 +51*n +33), {n, 0, 30}] (* G. C. Greubel, Nov 02 2018 *)
CoefficientList[Series[E^x (33 + 227 x + 313 x^2 + 136 x^3 + 21 x^4 + x^5), {x, 0, 50}], x]*Table[k!, {k, 0, 50}] (* Stefano Spezia, Nov 02 2018 *)
PROG
(Magma) [n^3+(n+1)^4+(n+2)^5: n in [0..30]]; // Vincenzo Librandi, Aug 05 2011
(PARI) vector(30, n, n--; (n+1)*(n^4 +10*n^3 +35*n^2 +51*n +33)) \\ G. C. Greubel, Nov 02 2018
(GAP) List([0..30], k->k^3+(k+1)^4+(k+2)^5); # Muniru A Asiru, Nov 02 2018
CROSSREFS
Sequence in context: A197347 A344524 A197398 * A119782 A252978 A268264
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, May 31 2001
EXTENSIONS
Offset changed from 1 to 0 by Vincenzo Librandi, Aug 05 2011
STATUS
approved