login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of (d+d') over all unordered pairs (d,d') with d*d' = n.
7

%I #27 Dec 15 2017 17:35:00

%S 2,3,4,9,6,12,8,15,16,18,12,28,14,24,24,35,18,39,20,42,32,36,24,60,36,

%T 42,40,56,30,72,32,63,48,54,48,97,38,60,56,90,42,96,44,84,78,72,48,

%U 124,64,93,72,98,54,120,72,120,80,90,60,168,62,96,104,135,84,144,68,126,96

%N Sum of (d+d') over all unordered pairs (d,d') with d*d' = n.

%C Paraphrasing the Jovovic formula: if n is not a square then a(n) = sigma(n), the sum of divisors of n, otherwise a(n) = sigma(n) + sqrt(n). - _Omar E. Pol_, Jun 23 2009

%C Row sums of A161901. - _Omar E. Pol_, Jan 06 2014

%H Antti Karttunen, <a href="/A060866/b060866.txt">Table of n, a(n) for n = 1..16384</a>

%F a(n) = A066839(n)+A070038(n) = A000203(n)+A037213(n). G.f.: Sum_{n>0} n*x^n*(x^(n*(n-1))-x^(n^2)+1)/(1-x^n). - _Vladeta Jovovic_, Jan 25 2003

%F a(n) = sum_{i=1..floor(sqrt(n))} (n+i^2)*(1-ceiling(n/i)+floor(n/i))/i. - _Wesley Ivan Hurt_, Jul 14 2014

%e a(4)=9 because pairs of factors are 1*4 and 2*2 and 1+4+2+2=9. a(6)=12 because pairs of factors are 1*6 and 2*3 and 1+6+2+3=12.

%p A060866 := proc(n)

%p numtheory[sigma](n) ;

%p if issqr(n) then

%p %+sqrt(n) ;

%p else

%p % ;

%p end if;

%p end proc: # _R. J. Mathar_, Oct 24 2011

%t Table[Sum[(i^2 + n) (1 - Ceiling[n/i] + Floor[n/i])/i, {i, Floor[Sqrt[n]]}], {n, 100}] (* _Wesley Ivan Hurt_, Jul 14 2014 *)

%t Array[If[IntegerQ@ #2, #3 + #2, #3] & @@ {#, Sqrt@ #, DivisorSigma[1, #]} &, 69] (* _Michael De Vlieger_, Nov 23 2017 *)

%o (PARI)

%o A037213(n) = if(issquare(n,&n),n,0);

%o A060866(n) = (sigma(n)+A037213(n)); \\ _Antti Karttunen_, Nov 23 2017, after Jan 25 2003 formula of _Vladeta Jovovic_

%Y Cf. A000203, A037213, A060872, A066839, A070038.

%K nonn,easy

%O 1,1

%A _Jason Earls_, May 04 2001

%E More terms from _Erich Friedman_, Jun 03 2001