login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060801 Invert transform of odd numbers: a(n) = Sum_{k=1..n} (2*k+1)*a(n-k), a(0)=1. 7
1, 3, 14, 64, 292, 1332, 6076, 27716, 126428, 576708, 2630684, 12000004, 54738652, 249693252, 1138988956, 5195558276, 23699813468, 108107950788, 493140127004, 2249484733444, 10261143413212, 46806747599172, 213511451169436 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is the number of generalized compositions of n when there are 2*i+1 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Daniel Birmajer, Juan B. Gil, Michael D. Weiner, (an + b)-color compositions, arXiv:1707.07798 [math.CO], 2017.

N. J. A. Sloane, Transforms

Index entries for linear recurrences with constant coefficients, signature (5,-2).

FORMULA

G.f.: (x^2-2*x+1)/(2*x^2-5*x+1).

G.f.: 1 / (1 - 3*x - 5*x^2 - 7*x^3 - 9*x^4 - 11*x^5 - ...). - Gary W. Adamson, Jul 27 2009

a(n) = 5*a(n-1) - 2*a(n-2) with a(1) = 3, a(2) = 14, for n >= 3. - Taras Goy, Mar 19 2019

a(n) = (2^(-2-n)*((5-sqrt(17))^n*(-7+sqrt(17)) + (5+sqrt(17))^n*(7+sqrt(17)))) / sqrt(17) for n > 0. - Colin Barker, Mar 19 2019

a(n) = A052913(n)-A052913(n-1). - R. J. Mathar, Sep 20 2020

MATHEMATICA

Join[{1}, LinearRecurrence[{5, -2}, {3, 14}, 22]] (* Jean-Fran├žois Alcover, Aug 07 2018 *)

PROG

(PARI) Vec((1 - x)^2 / (1 - 5*x + 2*x^2) + O(x^25)) \\ Colin Barker, Mar 19 2019

CROSSREFS

Cf. A001906, A052530, A033453, A030017, A052913 (partial sums).

Sequence in context: A026243 A058139 A101476 * A292744 A151239 A151240

Adjacent sequences:  A060798 A060799 A060800 * A060802 A060803 A060804

KEYWORD

nonn,easy

AUTHOR

Vladeta Jovovic, Apr 27 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 6 07:01 EDT 2021. Contains 343580 sequences. (Running on oeis4.)