%I #24 Jan 01 2025 00:15:24
%S 0,12,54,126,228,360,522,714,936,1188,1470,1782,2124,2496,2898,3330,
%T 3792,4284,4806,5358,5940,6552,7194,7866,8568,9300,10062,10854,11676,
%U 12528,13410,14322,15264,16236,17238,18270,19332,20424,21546,22698,23880,25092,26334
%N a(n) = 3*(n - 2)*(5*n -11).
%D L. Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906. pp. 313 - 455.
%D H. Brocard and T. Lemoyne, Courbes géométriques remarquables (courbes spéciales) Planes et Gauches. Tome I, Paris: Albert Blanchard, 1967 [First publ. 1919]; see p. 135.
%H Harry J. Smith, <a href="/A060785/b060785.txt">Table of n, a(n) for n = 2..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = 30*n + a(n-1) - 78 with n>2, a(2)=0. - _Vincenzo Librandi_, Aug 07 2010
%F G.f.: 6*x^3*(2+3*x)/(1-x)^3. - _Colin Barker_, Feb 28 2012
%t Table[3(n-2)(5n-11),{n,2,50}] (* or *) LinearRecurrence[{3,-3,1},{0,12,54},50] (* _Harvey P. Dale_, May 24 2023 *)
%o (PARI) a(n) = 3*(n - 2)*(5*n - 11) \\ _Harry J. Smith_, Jul 11 2009
%K nonn,easy
%O 2,2
%A Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Apr 28 2001