%I #16 Jul 03 2018 02:37:14
%S 0,1,27,640,15625,408240,11529602,352321536,11622614670,412500000000,
%T 15692141883605,637501182050304,27561634699895023,1263990776407224320,
%U 61305144653320312500,3135946492530623774720,168757013424812699892108
%N Number of ways of expressing an n-cycle in the symmetric group S_n as a product of n+1 transpositions.
%C For n >= 3, a(n) = A060348(n)*n. The number of ways of expressing an n-cycle in the symmetric group S_n as a product of n-1 transpositions was given in the comment to A000272.
%H Harry J. Smith, <a href="/A060603/b060603.txt">Table of n, a(n) for n = 1..200</a>
%H D. M. Jackson, <a href="http://dx.doi.org/10.1016/0097-3165(88)90062-3">Some Combinatorial Problems Associated with Products of Conjugacy Classes of the Symmetric Group</a>, Journal of Combinatorial Theory, Series A, 49 363-369(1988).
%F a(n) = (1/24) * (n^2 - 1) * n^(n + 1).
%e a(2) = 1 because in S_2 the only way to write (12) as a product of 3 transpositions is (12) = (12)(12)(12).
%p for n from 1 to 30 do printf(`%d,`,1/24 * (n^2 - 1) * n^(n + 1)) od:
%o (PARI) a(n)={(n^2 - 1) * n^(n + 1)/24} \\ _Harry J. Smith_, Jul 07 2009
%Y Cf. A060348, A000272.
%K nonn
%O 1,3
%A Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001
%E More terms from _James A. Sellers_, Apr 13 2001