%I
%S 1,3,2,1,6,6,6,4,2,10,14,20,24,24,16,8,15,26,48,80,120,144,144,96,48,
%T 21,44,99,212,420,720,1080,1296,1296,864,432,28,68,180,464,1140,2520,
%U 5040,8640,12960,15552,15552,10368,5184
%N Triangle T(n,k) in which nth row gives numbers of super edgemagic labelings of (n,k)graphs, for n >= 2, and 1 <= k <= 2n3.
%C (n,k)graphs are simple graphs with n vertices and k edges.
%C Row indexed n has length 2n3.
%C The diagonal counting the super edgemagic labelings of (n,n)graphs appears to be A077613(n1).
%H Jason Kimberley, <a href="/A060408/b060408.txt">Rows n = 2..101 of triangle</a>
%H R. M. FigueroaCenteno et al., <a href="http://dx.doi.org/10.1016/S0012365X(00)003149">The place of super edgemagic labelings among other classes of labelings</a>, Discrete Math., 231 (2001), 153168.
%e 1; 3,2,1; 6,6,6,4,2; 10,14,20,24,24,16,8; ...
%o (MAGMA) A060408 := func< n, k  &+[ Integers()  &*[ Integers()  a[j] : j in [i .. i+k1] ] : i in [3 .. 2*nk] ] where a is [ j lt 3 select 0 else j le n+1 select (j1) div 2 else (2*nj+1) div 2 : j in [1..2*n1] ] >; [[ A060408(n,k): k in [1..2*n3] ]: n in [1..10]];
%K nonn,tabf,easy
%O 2,2
%A _N. J. A. Sloane_, Apr 06 2001
%E Entry T(3,3)=1 (that was erroneously missing from the table of FigueroaCenteno et al. making the rows appear to be irregular) inserted by, DOI reference provided by, and empirical cross reference for the T(n,n) diagonal observed by _Jason Kimberley_, Apr 16 2010
