login
Triangle whose rows are the degrees of the irreducible representations of the groups PSL(2,p) as p runs through the primes.
3

%I #10 Feb 17 2022 00:16:46

%S 1,1,2,1,1,1,3,1,3,3,4,5,1,3,3,6,7,8,1,5,5,10,10,11,12,12,1,7,7,12,12,

%T 12,13,14,14,1,9,9,16,16,16,16,17,18,18,18,1,9,9,18,18,18,18,19,20,20,

%U 20,20,1,11,11,22,22,22,22,22,23,24,24,24,24,24,1,15,15,28,28,28,28,28

%N Triangle whose rows are the degrees of the irreducible representations of the groups PSL(2,p) as p runs through the primes.

%D J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Oxford Univ. Press, 1985.

%H J. S. Kimberley, <a href="/A060246/b060246.txt">First 123 rows of A060246 triangle, flattened</a>.

%e 1,1,2; 1,1,1,3; 1,3,3,4,5; ... (for q=2,3,5,...).

%o (Magma) CharacterTable(PSL(2,7)); (say)

%o (Magma) &cat[[Degree(irred): irred in CharacterTable(PSL(2, p))]: p in PrimesUpTo(30)];

%Y Row length sequence is A124678.

%Y Consecutive row sequences from 3rd to 11th are: A003860, A003879, A003882, A003883, A003885, A003886, A003887, A003890, A003891.

%Y Cf. A060247, A060240, A060241.

%K tabf,nonn,nice,easy

%O 1,3

%A _N. J. A. Sloane_, Mar 22 2001

%E Extended by _Jason Kimberley_, May 23 2010