|
|
A059621
|
|
Numbers k such that (5*3^k + 7)/2 is prime.
|
|
1
|
|
|
1, 3, 7, 9, 19, 27, 57, 69, 163, 175, 357, 379, 3045
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(14) > 30163. - Jinyuan Wang, Jan 28 2020
|
|
LINKS
|
Table of n, a(n) for n=1..13.
|
|
MATHEMATICA
|
Do[ If[ PrimeQ[ (5*3^n + 7)/2 ], Print[n] ], {n, 0, 10000} ]
|
|
PROG
|
(PARI) is(n)=ispseudoprime((5*3^n+7)/2) \\ Charles R Greathouse IV, Jun 13 2017
(Magma) [k: k in [0..1000] | IsPrime((5*3^k + 7) div 2)]; // Jinyuan Wang, Jan 28 2020
|
|
CROSSREFS
|
Cf. A059622 ((5*3^k-7)/2 is prime).
Sequence in context: A154508 A073573 A309328 * A034926 A224849 A304128
Adjacent sequences: A059618 A059619 A059620 * A059622 A059623 A059624
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Robert G. Wilson v, Feb 19 2001
|
|
STATUS
|
approved
|
|
|
|