The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059430 Cumulative boustrophedon transform of 1, 1, 1, 1, ... 2

%I #9 Jul 14 2017 03:48:18

%S 1,2,6,26,168,1575,20355,347026,7544974,203740685,6689616195,

%T 262455558837,12125816088194,651621526430030,40298978168771397,

%U 2841833840854800621,226670892373665762106,20303920347033450136016,2029489177032856597849714

%N Cumulative boustrophedon transform of 1, 1, 1, 1, ...

%F See Maple code for precise description.

%p CBOUS2 := proc(a) option remember; local c,i,j,n,r: if whattype(a) <> list then RETURN([]); fi: n := min( nops(a), 60); for i from 0 to n-1 do c[i,0] := a[i+1]; od; for i to n-1 do for j to i do c[i,j] := c[i,j-1] + add(c[i-1,i-r],r=1..j); od; od; RETURN([seq(c[i,i],i=0..n-1)]); end:

%t nmax = 19; CBOUS2[a_List] := CBOUS2[a] = Module[{i, j, n, r }, n = Min[Length[a], nmax]; For[i = 0, i <= n - 1, i++, c[i, 0] = a[[i + 1]]]; For[i = n - 1, i <= nmax, i++, For[j = 1, j <= i, j++, c[i, j] = c[i, j - 1] + Sum[c[i - 1, i - r], {r, 1, j}]]]; Return[Table[c[i, i], {i, 0, n - 1}]]]; Table[CBOUS2[Table[1, {n}]], {n, 0, nmax}] // Last (* _Jean-François Alcover_, Jul 14 2017, adapted from Maple *)

%Y See the triangles in A059433 and A059434.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jan 31 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 04:15 EST 2023. Contains 367629 sequences. (Running on oeis4.)