login
Numbers with different exponents in their prime factorizations.
29

%I #37 Aug 19 2024 13:16:40

%S 12,18,20,24,28,40,44,45,48,50,52,54,56,60,63,68,72,75,76,80,84,88,90,

%T 92,96,98,99,104,108,112,116,117,120,124,126,132,135,136,140,144,147,

%U 148,150,152,153,156,160,162,164,168,171,172,175,176,180,184,188,189

%N Numbers with different exponents in their prime factorizations.

%C Former name: Numbers k such that k/(largest power of squarefree kernel of k) is larger than 1.

%C Complement of A072774 (powers of squarefree numbers).

%C Also numbers k = p(1)^alpha(1)* ... * p(r)^alpha(r) such that RootMeanSquare(alpha(1), ..., alpha(r)) is not an integer. - _Ctibor O. Zizka_, Sep 19 2008

%H Donald Alan Morrison, <a href="/A059404/b059404.txt">Table of n, a(n) for n = 1..10000</a>

%H Donald Alan Morrison, <a href="/A059404/a059404.txt">Sage program</a>

%F A062760(a(n)) > 1, i.e., a(n)/(A007947(a(n))^A051904(a(n)) = a(n)/A062759(n) > 1.

%F A071625(a(n)) > 1. - _Michael S. Branicky_, Sep 01 2022

%e 440 is in the sequence because 440 = 2^3*5*11 and it has two distinct exponents, 3 and 1.

%o (PARI) is(n)=#Set(factor(n)[,2])>1 \\ _Charles R Greathouse IV_, Sep 18 2015

%o (Python)

%o from sympy import factorint

%o def ok(n): return len(set(factorint(n).values())) > 1

%o print([k for k in range(190) if ok(k)]) # _Michael S. Branicky_, Sep 01 2022

%o (Python)

%o from math import isqrt

%o from sympy import mobius, integer_nthroot

%o def A059404(n):

%o def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))

%o def f(x): return n+1-(y:=x.bit_length())+sum(g(integer_nthroot(x,k)[0]) for k in range(1,y))

%o kmin, kmax = 1,2

%o while f(kmax) >= kmax:

%o kmax <<= 1

%o while True:

%o kmid = kmax+kmin>>1

%o if f(kmid) < kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o if kmax-kmin <= 1:

%o break

%o return kmax # _Chai Wah Wu_, Aug 19 2024

%Y Cf. A003557, A007947, A051904, A062759, A062760, A071625.

%K nonn,easy

%O 1,1

%A _Labos Elemer_, Jul 18 2001