The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A059278 G.f. is G(x*(1-x)/(1-2*x)) where G(x) is g.f. for Catalan numbers A000108. 3
 1, 1, 3, 11, 43, 175, 735, 3167, 13935, 62383, 283311, 1302271, 6047679, 28332991, 133752191, 635618431, 3038326911, 14599154431, 70474889471, 341624867071, 1662254107391, 8115717976831, 39747223425791, 195219110182911, 961330824858623 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Robert Israel, Table of n, a(n) for n = 0..1000 FORMULA G.f.: (2*x-1+sqrt((1-2*x)*(1-6*x+4*x^2)))/(2*x*(x-1)). G.f.: W(0), where W(k) = 1 + (4*k+1)*x*(1-x)/( (k+1)*(1-2*x) - 2*x*(1-x)*(1-2*x)*(k+1)*(4*k+3)/(2*x*(1-x)*(4*k+3) + (2*k+3)*(1-2*x)/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013 Recurrence: (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 12*(2*n-3)*a(n-2) + 12*(2*n-5)*a(n-3) - 4*(2*n-7)*a(n-4). - Vaclav Kotesovec, Jun 19 2014 a(n) ~ sqrt(10-2*sqrt(5)) * (3+sqrt(5))^n / (2*sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 19 2014 a(n) = Sum_{k=0..n}((C(k)*Sum_{i=0..n-k}(2^i*binomial(k,n-k-i)*binomial(k+i-1,i)*(-1)^(n-k-i))))), where C(k) is Catalan numbers. - Vladimir Kruchinin, Mar 04 2016 MAPLE f:= gfun:-rectoproc({(4+8*n)*a(n)+(-36-24*n)*a(1+n)+(60+24*n)*a(n+2)+(-33-9*n)*a(n+3)+(5+n)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 11}, a(n), remember): map(f, [\$0..30]); # Robert Israel, Mar 04 2016 MATHEMATICA CoefficientList[Series[(2*x-1+Sqrt[(1-2*x)*(1-6*x+4*x^2)])/(2*x*(x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 19 2014 *) Table[Sum[CatalanNumber[k] Sum[2^i Binomial[k, n - k - i] Binomial[k + i - 1, i] (-1)^(n - k - i), {i, 0, n - k}], {k, 0, n}], {n, 0, 24}] (* Michael De Vlieger, Mar 04 2016 *) PROG (PARI) a(n)=polcoeff((2*x-1 +sqrt((1-2*x)*(1-6*x+4*x^2)+x^2*O(x^n))) /(2*x^2-2*x), n); (PARI) x='x+O('x^100); Vec((2*x-1+sqrt((1-2*x)*(1-6*x+4*x^2)))/(2*x*(x-1))) \\ Altug Alkan, Mar 05 2016 (Maxima) a(n):=sum((binomial(2*k, k)*sum(2^i*binomial(k, n-k-i)*binomial(k+i-1, i)*(-1)^(n-k-i), i, 0, n-k))/(k+1), k, 0, n); /* Vladimir Kruchinin, Mar 04 2016 */ CROSSREFS Cf. A000108. Sequence in context: A026876 A270447 A151090 * A151091 A151092 A151093 Adjacent sequences:  A059275 A059276 A059277 * A059279 A059280 A059281 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 24 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 11:24 EDT 2021. Contains 345397 sequences. (Running on oeis4.)