login
Analog of A059226 in which left diagonal is all 1's.
3

%I #10 Jan 04 2017 02:44:08

%S 1,1,2,1,5,8,1,11,28,39,1,23,80,164,214,1,47,208,548,1010,1274,1,95,

%T 512,1632,3744,6490,8028,1,191,1216,4528,12248,25868,43132,52698,1,

%U 383,2816,11968,37024,90624,181272,294366,356630,1,767

%N Analog of A059226 in which left diagonal is all 1's.

%H G. C. Greubel, <a href="/A059274/b059274.txt">Table of n, a(n) for the first 51 rows, flattened</a>

%e Triangle begins with:

%e 1;

%e 1, 2;

%e 1, 5, 8;

%e 1, 11, 28, 39;

%e 1, 23, 80, 164, 214;

%e 1, 47, 208, 548, 1010, 1274;

%e 1, 95, 512, 1632, 3744, 6490, 8028;

%e ... - _G. C. Greubel_, Jan 03 2017

%t T[i_, j_]:= T[i, j] = Module[{r, s, t1}, If[i == 0 && j == 0, Return[1]];

%t If[j == 0, Return[1]]; t1 = T[i, j - 1]; For[r = 0, r <= i - j, r++,

%t For[s = 0, s <= j, s++, If[r + s != i, t1 = t1 + T[r + s, s]]]];

%t Return[t1]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Jan 03 2017 *)

%Y Cf. A059226, A059274.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Jan 24 2001