%I #14 Jul 10 2018 09:48:46
%S 1,0,1,0,1,1,1,1,1,2,2,2,3,2,3,4,4,4,5,6,7,7,8,8,11,11,12,13,14,16,19,
%T 19,22,22,26,28,31,33,36,40,45,46,52,54,61,66,71,76,83,90,99,104,114,
%U 120,133,142,153,164,176,190,207,218,237,250,273,291,312
%N McKay-Thompson series of class 95A for Monster.
%C Also McKay-Thompson series of class 95B for Monster. - _Michel Marcus_, Feb 24 2014
%H Vaclav Kotesovec, <a href="/A058769/b058769.txt">Table of n, a(n) for n = -1..3200</a> (computed by David A. Madore)
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H David A. Madore, <a href="http://mathforum.org/kb/thread.jspa?forumID=253&threadID=1602206&messageID=5836094">Coefficients of Moonshine (McKay-Thompson) series</a>, The Math Forum
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F a(n) ~ exp(4*Pi*sqrt(n/95)) / (sqrt(2) * 95^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jul 10 2018
%e T95A = 1/q + q + q^3 + q^4 + q^5 + q^6 + q^7 + 2*q^8 + 2*q^9 + 2*q^10 + 3*q^11 + ...
%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.
%K nonn
%O -1,10
%A _N. J. A. Sloane_, Nov 27 2000
%E More terms from _Michel Marcus_, Feb 24 2014