login
McKay-Thompson series of class 95A for Monster.
1

%I #14 Jul 10 2018 09:48:46

%S 1,0,1,0,1,1,1,1,1,2,2,2,3,2,3,4,4,4,5,6,7,7,8,8,11,11,12,13,14,16,19,

%T 19,22,22,26,28,31,33,36,40,45,46,52,54,61,66,71,76,83,90,99,104,114,

%U 120,133,142,153,164,176,190,207,218,237,250,273,291,312

%N McKay-Thompson series of class 95A for Monster.

%C Also McKay-Thompson series of class 95B for Monster. - _Michel Marcus_, Feb 24 2014

%H Vaclav Kotesovec, <a href="/A058769/b058769.txt">Table of n, a(n) for n = -1..3200</a> (computed by David A. Madore)

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H David A. Madore, <a href="http://mathforum.org/kb/thread.jspa?forumID=253&amp;threadID=1602206&amp;messageID=5836094">Coefficients of Moonshine (McKay-Thompson) series</a>, The Math Forum

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F a(n) ~ exp(4*Pi*sqrt(n/95)) / (sqrt(2) * 95^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jul 10 2018

%e T95A = 1/q + q + q^3 + q^4 + q^5 + q^6 + q^7 + 2*q^8 + 2*q^9 + 2*q^10 + 3*q^11 + ...

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%K nonn

%O -1,10

%A _N. J. A. Sloane_, Nov 27 2000

%E More terms from _Michel Marcus_, Feb 24 2014