login
a(n) is smallest positive integer > a(n-1) such that (sum{k=1 to n}[a(k)]) divides (product{k=1 to n}[a(k)])*(sum{k=1 to n}[1/a(k)]).
0

%I #7 Apr 09 2014 10:16:57

%S 1,2,4,8,13,17,52,59,71,85,104,112,148,156,192,224,264,280,284,290,

%T 322,336,356,364,372,420,434,438,442,450,460,465,503,504,516,521,523,

%U 558,570,572,578,580,598,612,624,636,656,667,669,708,711,719,725,731,744

%N a(n) is smallest positive integer > a(n-1) such that (sum{k=1 to n}[a(k)]) divides (product{k=1 to n}[a(k)])*(sum{k=1 to n}[1/a(k)]).

%e a(5) = 13 because 13 is the smallest positive integer m, m > a(4) = 8, such that (1 + 2 + 4 + 8 + m) divides 1 * 2 * 4 * 8 * m * (1 + 1/2 + 1/4 + 1/8 + 1/m).

%K nonn

%O 1,2

%A _Leroy Quet_, Dec 12 2000