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A058265: A geometric construction of the tribonacci constant with marked ruler and compass
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The tribonacci constant ('t', sometimes referred with Greek letters eta 'η' or tau 'τ') is related to the 
tribonacci numbers sequence (OEIS A000073 : 0, 0, 1, 1, 2, 4, 7...) as the Golden Ratio is related to 
the Fibonacci sequence, and it is the only real solution to the equation  x³ - x² - x - 1 = 0  [1] [2].    
Its decimal expansion, as appears in OEIS A058265 , is: 

1.8392867552141611325518525646532866004241787460975922467787586394042032220...

It also responds to this formula [3]:

t = 1/3 [1 + ³√(19 + 3√33) + ³√(19 - 3√33)] 

Thus, tribonacci constant is not a constructible number, with compass and straightedge: in ancient 
Greece, mathematician Nicomedes gave a method for construct any cubic root with neusis [4] [5], 
and geometers like Persian Omar Khayyam were capable of solve cubic equations with conics [6].
But, we present here a simple and apparently unpublished geometric construction of the tribonacci 
constant with marked ruler and compass (but not properly a neusis construction):

http://oeis.org/A058265
http://oeis.org/A000073
http://oeis.org/A058265


We first draw a unit circle with origin at A, and then a straight line, the vertical tangent passing 
through B: now, we must put the marked ruler against the circle as another tangent, while putting 
the marks for the lenght of the radius on the AB line and the tangent passing through B, creating 
point C, point D and point E. Now, let's call segment AC as t: so, we can see two equations for the 
angle BCD,  sin (BCD) = 1 / t  and  cos (BCD) = ( 1 - t ) / 1  , and, from  sin² + cos² = 1  , that leads 
to a quartic equation,   t⁴ - 2t³ + 1 = 0  , which has the next factorization:

( t - 1 ) · ( t³ - t² - t - 1 ) = 0

This equation has two solutions: the first one, for  ( t - 1 )  , it will be evidently  t = 1  , that is, the 
tangent on the unit circle; and the other one, for  ( t³ - t² - t - 1 )  , as we established at the beginning 
of this article, has only one real solution, that is, the tribonacci constant. Quod erat demonstrandum.
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