login
Coefficients of the highest power of r in a sequence of parametric solutions for the Diophantine equation x^3+y^3+z^3=1.
1

%I #20 Apr 19 2016 01:07:32

%S 9,9,3888,1679616,725594112,313456656384,135413275557888,

%T 58498535041007616,25271367137715290112,10917230603493005328384,

%U 4716243620708978301861888,2037417244146278626404335616,880164249471192366606672986112,380230955771555102374082730000384

%N Coefficients of the highest power of r in a sequence of parametric solutions for the Diophantine equation x^3+y^3+z^3=1.

%C The iteration for the solutions is as follows: x_0=9*r^4, y_0=-9*r^4+3*r, z_0=-9*r^3+1, x_1=9*r^4, y_1=-9*r^4-3*r, z_1=9*r^3+1. For n>=2: x_n=(432*r^6-2) * x_(n-1) - x_(n-2) - 108*r^4, y_n=(432*r^6-2) * y_(n-1) - y_(n-2) - 108*r^4, z_n=(432*r^6-2) * z_(n-1) - z_(n-2) + 216*r^6 + 4. For all n, x_n^3+y_n^3+z_n^3=1. Each x_n, y_n and z_n is a polynomial in r; the leading coefficients of x_n and z_n are both a(n); the leading coefficient of y_n is -a(n).

%H Vincenzo Librandi, <a href="/A058200/b058200.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (432).

%F a(n) = 9*432^(n-1) for n>0.

%F a(n) = 3^(3*n-1)*16^(n-1) for n>0. G.f.: 9*(431*x-1) / (432*x-1). - _Colin Barker_, Jun 26 2014

%e For n=3, x_3 = 1679616*r^16 - 66096*r^10 + 153*r^4, y_3 = -1679616*r^16 - 559872*r^13 - 27216*r^10 + 3888*r^7 + 63*r^4 - 3*r, z_3 = 1679616*r^15 + 279936*r^12 - 11664*r^9 - 648*r^6 + 9*r^3 + 1, so a(3) = 1679616.

%t x[0]=x[1]=9*r^4; y[0]=-9*r^4+3*r; z[0]=-9*r^3+1; y[1]=-9*r^4-3*r; z[1]=9*r^3+1; x[n_] := x[n]=Expand[(432*r^6-2)*x[n-1]-x[n-2]-108*r^4]; y[n_] := y[n]=Expand[(432*r^6-2)*y[n-1]-y[n-2]-108*r^4]; z[n_] := z[n]=Expand[(432*r^6-2)*z[n-1]-z[n-2]+216*r^6+4]; a[n_] := Last[CoefficientList[x[n], r]]

%o (PARI) Vec(9*(431*x-1)/(432*x-1) + O(x^100)) \\ _Colin Barker_, Jun 26 2014

%K nonn,easy

%O 0,1

%A _Yasutoshi Kohmoto_

%E Edited by _Dean Hickerson_, Dec 06 2002

%E More terms from _Colin Barker_, Jun 26 2014