%I #10 Dec 27 2021 16:04:25
%S 3,5,11,59,419,839,2521,27733,360337,720703,12252259,232792559,
%T 5354228879,26771144401,80313433231,2329089562799,72201776446801,
%U 144403552893599,5342931457063157,219060189739591153
%N Primes closest to LCM(1,...,x) either above or below. Arguments x were selected from A000961 (powers of primes including primes) in order to obtain distinct values of LCM exactly once.
%H Harvey P. Dale, <a href="/A058029/b058029.txt">Table of n, a(n) for n = 0..100</a>
%t pcl[n_]:=Module[{lc=LCM@@Range[n],p1,p2},p1=NextPrime[lc,-1];p2= NextPrime[ lc];If[p2-lc<lc-p1,p2,p1]]; Table[pcl[n],{n,2,50}]//Union
%Y Cf. A000961, A003418, A051451.
%K nonn
%O 0,1
%A _Labos Elemer_, Nov 16 2000