The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057923 a(0)=0, a(1)=2, a(n) = smallest number such that sequence b(n) = {a(n-1) BITWISE OR a(n)} is strictly monotonically increasing. 4

%I

%S 0,2,1,4,2,5,8,6,9,16,10,17,12,18,13,32,14,33,16,34,17,36,18,37,24,38,

%T 25,64,26,65,28,66,29,96,30,97,128,98,129,100,130,101,136,102,137,112,

%U 138,113,140,114,141,256,142,257,144,258,145,260,146,261,152,262,153

%N a(0)=0, a(1)=2, a(n) = smallest number such that sequence b(n) = {a(n-1) BITWISE OR a(n)} is strictly monotonically increasing.

%C Conjecture: a(n+2) > a(n). - _Robert Israel_, Aug 13 2017

%H Robert Israel, <a href="/A057923/b057923.txt">Table of n, a(n) for n = 0..10000</a>

%e See example in A051145.

%p A[0]:= 0: A[1]:= 2: B[1]:= 2:

%p for n from 2 to 100 do

%p for k from B[n-1]-A[n-1] do

%p b:= Bits:-Or(A[n-1],k);

%p if b > B[n-1] then A[n]:= k; B[n]:= b; break fi

%p od

%p od:

%p seq(A[i],i=0..100); # _Robert Israel_, Aug 13 2017

%Y Cf. A051145, A057924, A057925.

%K easy,nonn,look

%O 0,2

%A Larry Reeves (larryr(AT)acm.org), Oct 03 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 14:40 EST 2022. Contains 350401 sequences. (Running on oeis4.)