login
Maximum cycle size in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506.
9

%I #8 Jan 10 2024 14:25:12

%S 1,1,2,3,6,6,24,72,144,147,588,672,2136,10152,11520,29484,117936,

%T 270576,656352,2062368,4040160

%N Maximum cycle size in range [A014137(n-1)..A014138(n-1)] of permutation A057505/A057506.

%C For the convenience of the range notation above, we define A014137(-1) and A014138(-1) as zero.

%C Equal to the degree of the polynomials M_n(x) Donaghey gives on the page 81 of his paper.

%C Factored terms: 1, 1, 2, 3, 2*3, 2*3, 2^3 * 3, 2^3 * 3^2, 2^4 * 3^2, 3 * 7^2, 2^2 * 3 * 7^2, 2^5 * 3 * 7, 2^3 * 3 * 89, 2^3 * 3^3 * 47, 2^8 * 3^2 * 5, 2^2 * 3^4 * 7 * 13, 2^4 * 3^4 * 7 * 13, 2^4 * 3^2 * 1879, 2^5 * 3^2 * 43 * 53, 2^5 * 3^3 * 7 * 11 * 31, 2^5 * 3 * 5 * 19 * 443

%H Robert Donaghey, <a href="https://doi.org/10.1016/0095-8956(80)90045-3">Automorphisms on Catalan trees and bracketing</a>, J. Combin. Theory, Series B, 29 (1980), 75-90.

%Y Cf. A057507, A060114, A080967, A081165.

%Y Occurs for first time in A073203 as row 2614.

%K nonn,more

%O 0,3

%A _Antti Karttunen_, Sep 07 2000