Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 May 02 2021 22:02:09
%S 4,20,74,347,1743,8385,44355,229952,1235489,6629026,37152645,
%T 202017712,1142393492,6333190658
%N Numbers of n-digit primes that undulate.
%C 'Undulate' means that the alternate digits are consistently greater than or less than the digits adjacent to them (e.g., 70769). Smoothly undulating palindromic primes (e.g., 95959) are a subset and included in the count.
%D C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317.
%H C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," <a href="http://www.zentralblatt-math.org/zmath/en/search/?q=an:0983.00008&format=complete">Zentralblatt review</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/UndulatingNumber.html">Undulating Number.</a>
%o (Python)
%o from sympy import isprime
%o def f(w,dir):
%o if dir == 1:
%o for s in w:
%o for t in range(int(s[-1])+1,10):
%o yield s+str(t)
%o else:
%o for s in w:
%o for t in range(0,int(s[-1])):
%o yield s+str(t)
%o def A057333(n):
%o c = 0
%o for d in '123456789':
%o x = d
%o for i in range(1,n):
%o x = f(x,(-1)**i)
%o c += sum(1 for p in x if isprime(int(p)))
%o if n > 1:
%o y = d
%o for i in range(1,n):
%o y = f(y,(-1)**(i+1))
%o c += sum(1 for p in y if isprime(int(p)))
%o return c # _Chai Wah Wu_, Apr 25 2021
%Y Cf. A046075, A033619, A032758, A039944, A016073, A046076, A046077, A057332.
%K nonn,base,more
%O 1,1
%A _Patrick De Geest_, Sep 15 2000
%E Offset corrected and a(10)-a(11) from _Donovan Johnson_, Aug 08 2010
%E a(12) from _Giovanni Resta_, Feb 24 2013
%E a(2) corrected by _Chai Wah Wu_, Apr 25 2021
%E a(13)-a(14) from _Chai Wah Wu_, May 02 2021