login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First member of a prime quadruple in a p^2+p-1 progression.
3

%I #27 Aug 14 2024 16:54:33

%S 3,11,53,1693,2663,4423,16831,17609,36229,49801,94961,121493,150869,

%T 176303,183761,188011,210901,213833,218579,272903,300301,329671,

%U 439511,444791,453023,469613,518813,531911,546071,559703,570719,614279,705781

%N First member of a prime quadruple in a p^2+p-1 progression.

%C I found only one prime 5-tuple so far: (3,11,131,17291,298995971).

%C Subsequence of A057324. - _Pierre CAMI_, Sep 13 2013

%H Pierre CAMI, <a href="/A057325/b057325.txt">Table of n, a(n) for n = 1..6778</a>

%H <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a>

%e 3 -> 3^2+3-1 = 11 -> 11^2+11-1 = 131 -> 131^2+131-1 = 17291 hence the quadruple (3,11,131,17291).

%t okQ[n_] := And@@PrimeQ/@NestList[#^2 + # - 1 &, n, 3];

%t Select[ Prime[ Range[ 60000]], okQ] (* _Harvey P. Dale_, Jan 05 2011 *)

%o (PARI) is(n)=for(k=1,4,if(!isprime(n),return(0));n=n^2+n-1);1 \\ _Charles R Greathouse IV_, Sep 13 2013

%Y Cf. A053184, A053185, A057324.

%K nonn

%O 1,1

%A _Patrick De Geest_, Aug 15 2000

%E Offset changed by _Andrew Howroyd_, Aug 14 2024