



24, 96, 120, 240, 336, 384, 480, 720, 840, 960, 1320, 1344, 1536, 1920, 1944, 2016, 2184, 2520, 2880, 3360, 3696, 3840, 3960, 4896, 5280, 5376, 5544, 6144, 6240, 6840, 6864, 7680, 7776, 8064, 8736, 9240, 9360, 9720, 10080, 10296, 10920, 11520, 12144
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This sequence was originally described as the list of "congrua". But that name more properly refers to A256418.
Numbers of the form (4(x^3yxy^3) (where x,y are integers and x>=y). Squares of these numbers are of the form N^4K^2 (where N belongs to A135786 and K to A135789 or A135790). Proof uses identity: (4(x^3yxy^3))^2=(x^2+y^2)^4(x^4  6x^2 y^2 + y^4)^2.  Artur Jasinski, Nov 29 2007, Nov 14 2008


LINKS



MAPLE

N:= 10^5: # to get all terms <= N
select(`<=`, {seq(seq(4*(x^3*yx*y^3), y=1..x1), x=1..floor(sqrt(N/4+1)))}, N);
# If using Maple 11 or earlier, uncomment the following line


MATHEMATICA

a = {}; Do[Do[w = 4x^3y  4x y^3; If[w > 0 && w < 10000, AppendTo[a, w]], {x, y, 1000}], {y, 1, 1000}]; Union[a] (* Artur Jasinski, Nov 29 2007 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



