|
|
A056849
|
|
Final digit of n^n.
|
|
15
|
|
|
1, 4, 7, 6, 5, 6, 3, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 4, 9, 0, 1, 4, 7, 6, 5, 6, 3, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 4, 9, 0, 1, 4, 7, 6, 5, 6, 3, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 4, 9, 0, 1, 4, 7, 6, 5, 6, 3, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 4, 9, 0, 1, 4, 7, 6, 5, 6, 3, 6, 9, 0, 1, 6, 3, 6, 5, 6, 7, 4, 9, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Cyclic with a period of 20.
Also decimal expansion of 147656369016365674900/(10^20-1). - Bruno Berselli, Sep 27 2021
|
|
REFERENCES
|
R. Euler and J. Sadek, "A Number That Gives The Units Of n^n", Journal of Recreational Mathematics, vol. 29(3), 1998, pp. 203-4.
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
|
|
MAPLE
|
seq(n &^ n mod 10, n=1..120);
|
|
MATHEMATICA
|
Table[PowerMod[n, n, 10], {n, 1, 100}]
|
|
PROG
|
(Magma) [Modexp(n, n, 10): n in [1..100]]; // Bruno Berselli, Sep 27 2021
(Python)
def a(n): return pow(n, n, 10)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|