%I
%S 1,3,7,13,19,25,27,31,39,43,49,51,61,63,67,73,79,85,87,91,99,103,109,
%T 111,121,123,127,133,139,145,147,151,159,163,169,171,181,183,187,193,
%U 199,205,207,211,219,223,229,231,241,243,247,253,259,265,267,271,279
%N Sequence remaining after fourth round of Flavius Josephus sieve; remove every fifth term of A056530.
%C Numbers {1, 3, 7, 13, 19, 25, 27, 31, 39, 43, 49, 51} mod 60
%F From _Chai Wah Wu_, Jul 24 2016: (Start)
%F a(n) = a(n1) + a(n12)  a(n13) for n > 13.
%F G.f.: x*(9*x^12 + 2*x^11 + 6*x^10 + 4*x^9 + 8*x^8 + 4*x^7 + 2*x^6 + 6*x^5 + 6*x^4 + 6*x^3 + 4*x^2 + 2*x + 1)/(x^13  x^12  x + 1). (End)
%t LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,1,1},{1,3,7,13,19,25,27,31,39,43,49,51,61},60] (* _Harvey P. Dale_, Mar 11 2019 *)
%Y Compare A000027 for 0 rounds of sieve, A005408 after 1 round of sieve, A047241 after 2 rounds, A056530 after 3 rounds, A056531 after 4 rounds, A000960 after all rounds.
%Y After n rounds the remaining sequence comprises A002944(n) numbers mod A003418(n+1), i.e. 1/(n+1) of them.
%K easy,nonn
%O 1,2
%A _Henry Bottomley_, Jun 19 2000
