%I
%S 8,30,73,145,255,413,630,918,1290,1760,2343,3055,3913,4935,6140,7548,
%T 9180,11058,13205,15645,18403,21505,24978,28850,33150,37908,43155,
%U 48923,55245,62155,69688,77880,86768,96390
%N T(n,n-5), where T is the array in A055830.
%H G. C. Greubel, <a href="/A055832/b055832.txt">Table of n, a(n) for n = 5..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = (n-3)*(n-4)*(n^2+13*n+6)/24, n>4, sign corrected Mar 13 2016.
%F G.f.: x^5*(4-3*x)*(2-x)/(1-x)^5. - _R. J. Mathar_, Mar 13 2016
%F E.g.f.: (-72 -120*x -36*x^2 + (72 +48*x -48*x^2 +12*x^3 +x^4)*exp(x))/24. - _G. C. Greubel_, Jan 21 2020
%p seq( (n-3)*(n-4)*(n^2+13*n+6)/4!, n=5..40); # _G. C. Greubel_, Jan 21 2020
%t Table[(n-3)*(n-4)*(n^2+13*n+6)/4!, {n,5,40}] (* _G. C. Greubel_, Jan 21 2020 *)
%o (PARI) a(n) = (n-3)*(n-4)*(n^2+13*n+6)/4!; \\ _G. C. Greubel_, Jan 21 2020
%o (Magma) [(n-3)*(n-4)*(n^2+13*n+6)/24: n in [5..40]]; // _G. C. Greubel_, Jan 21 2020
%o (Sage) [(n-3)*(n-4)*(n^2+13*n+6)/24 for n in (5..40)] # _G. C. Greubel_, Jan 21 2020
%o (GAP) List([5..40], n-> (n-3)*(n-4)*(n^2+13*n+6)/24); # _G. C. Greubel_, Jan 21 2020
%Y Cf. A055830.
%K nonn,easy
%O 5,1
%A _Clark Kimberling_, May 28 2000
|