login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n satisfying sigma(n+1) = sigma(n-1).
13

%I #21 May 09 2017 21:01:12

%S 34,55,285,367,835,849,919,1241,1505,2911,2914,3305,4149,4188,6111,

%T 6903,7170,7913,9360,10251,10541,12566,15086,17273,17815,19005,19689,

%U 21411,21462,24882,25020,26610,28125,30593,30789,31485,38211,38983

%N n satisfying sigma(n+1) = sigma(n-1).

%C Essentially the same as A007373: a(n) = A007373(n) + 1.

%C Numbers n such that antisigma(n+1) - antisigma(n-1) = 2*n + 1, where antisigma(m) = A024816(m) = sum of nondivisors of m. - _Jaroslav Krizek_, Mar 17 2013

%H Vincenzo Librandi and Giovanni Resta, <a href="/A055574/b055574.txt">Table of n, a(n) for n = 1..10000</a> (first 200 terms from Vincenzo Librandi)

%e sigma(34-1) = 48 = sigma(34+1), so 34 is a term of the sequence.

%t Select[Range[10^5], DivisorSigma[1, # + 1] == DivisorSigma[1, # - 1] &]

%o (PARI) is(n)=sigma(n+1)==sigma(n-1) \\ _Charles R Greathouse IV_, Mar 09 2014

%o (PARI) x=y=1; forfactored(z=3,10^6, if(sigma(z)==sigma(x), print1(y[1]", ")); x=y; y=z) \\ _Charles R Greathouse IV_, May 09 2017

%Y Cf. A007373.

%K nonn

%O 1,1

%A _Joseph L. Pe_, Feb 12 2002