login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055544 Total number of nodes in all rooted trees with n nodes. 6

%I

%S 1,2,6,16,45,120,336,920,2574,7190,20262,57192,162318,461622,1317165,

%T 3766096,10792399,30980862,89084844,256524560,739658472,2135213982,

%U 6170505665,17849399616,51679366125,149750549260,434260826883,1260197855532,3659410074932

%N Total number of nodes in all rooted trees with n nodes.

%H Alois P. Heinz, <a href="/A055544/b055544.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphVertex.html">Graph Vertex.</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphEdge.html">Graph Edge</a>

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F a(n) = n*A000081(n).

%F G.f.: x * (d/dx) x * Product_{k>=1} 1/(1 - x^k)^(a(k)/k). - _Ilya Gutkovskiy_, May 26 2019

%p with(numtheory):

%p b:= proc(n) option remember; local d, j; `if`(n<2, n,

%p (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1))

%p end:

%p a:= n-> n*b(n):

%p seq(a(n), n=1..30); # _Alois P. Heinz_, May 16 2013

%t b[n_] := b[n] = If[n<2, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}])/(n-1)]; a[n_] := n*b[n]; Table[a[n], {n, 1, 30}] (* _Jean-Fran├žois Alcover_, Jan 25 2017, after _Alois P. Heinz_ *)

%Y Cf. A000081, A000169, A055543, A055544.

%K nonn

%O 1,2

%A _Eric W. Weisstein_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 4 08:38 EST 2021. Contains 341781 sequences. (Running on oeis4.)