%I #11 Oct 02 2017 06:15:15
%S 1,2,3,4,5,6,8,9,10,11,12,16,27,28
%N Numbers n such that LCM{1, ..., n} is a minimal number.
%C Minimal numbers (A007416): let A(h) = least positive integer having exactly h divisors, let d(n) = number of divisors of n; then n is minimal if A(d(n)) = n; i.e. if n is the least positive integer having the number of divisors it has.
%C Also the numbers n such that LCM (1, ..., n) is a highly composite number (A002182). - _Matthew Vandermast_, Jul 12 2004
%D J. Roberts, Lure of the Integers, Math. Assoc. of America, 1992, page 86.
%H M. E. Grost, <a href="http://www.jstor.org/stable/2315183">The smallest number with a given number of divisors</a>, Amer. Math. Monthly, 75 (1968), 725-729.
%Y Cf. A007416.
%Y Cf. A003418, A095921.
%K nonn,fini,full
%O 1,2
%A _Robert G. Wilson v_, Jul 05 2000
%E Description corrected by _N. J. A. Sloane_, Feb 27 2003