login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of prime divisors of -1 + (product of first n primes).
11

%I #26 Mar 07 2022 13:26:20

%S 0,1,1,2,1,1,2,3,3,2,2,4,1,2,3,3,2,3,3,2,2,4,3,1,2,2,4,4,4,3,3,3,3,3,

%T 3,4,4,4,5,3,5,4,5,4,4,4,4,2,3,3,2,4,3,4,2,4,4,7,4,3,3,4,4,3,3,1,3,1,

%U 4,3,5,5,4,4,6,5,5,3,4,3,4,4,3,4,2,3,4

%N Number of prime divisors of -1 + (product of first n primes).

%H Amiram Eldar, <a href="/A054989/b054989.txt">Table of n, a(n) for n = 1..99</a>

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha103.htm">Factorizations of many number sequences</a>

%H R. G. Wilson v, <a href="/A038507/a038507.txt">Explicit factorizations</a>

%e a(4)=2 because 2*3*5*7 - 1 = 209 = 11*19

%t a[q_] := Module[{x, n}, x=FactorInteger[Product[Table[Prime[i], {i, q}][[j]], {j, q}]-1]; n=Length[x]; Sum[Table[x[[i]][[2]], {i, n}][[j]], {j, n}]]

%t PrimeOmega[#] & /@ (FoldList[Times, Prime[Range[81]]] - 1) (* _Harvey P. Dale_, Mar 11 2017 *)

%Y Cf. A054988, A054990, A054991, A054992, A057588.

%K nonn,hard

%O 1,4

%A Arne Ring (arne.ring(AT)epost.de), May 30 2000

%E More terms from _Robert G. Wilson v_, Mar 24 2001

%E a(42)-a(81) from _Charles R Greathouse IV_, May 07 2011

%E a(82)-a(87) from _Amiram Eldar_, Oct 03 2019