login
Numbers k such that 9090...9091 (with k-1 copies of 90 and one copy of 91) is prime.
4

%I #22 Jan 14 2022 05:24:54

%S 2,3,9,15,26,33,146,320,1068,1505,134103,800393

%N Numbers k such that 9090...9091 (with k-1 copies of 90 and one copy of 91) is prime.

%C Numbers k such that 10*(10^(2k)-1)/11 + 1 is prime.

%D J. A. H. Hunter and J. S. Madachy, Mathematical Diversions, New York: Dover Publications, Inc., 1974, pp. 4-5. Originally published by Van Nostrand, 1963.

%H David Broadhurst, <a href="http://groups.yahoo.com/group/primenumbers/message/783">Proof that 1505 term is prime</a> [BROKEN LINK]

%H David Broadhurst, <a href="/A054416/a054416.txt">Unique record</a>, digest of 3 messages in primenumbers Yahoo group, Apr 8-9, 2001. [Cached copy]

%F a(n) = (A001562(n)-1)/2.

%e The first 3 numbers are 9091, 909091, 909090909090909091.

%t Do[ If[ PrimeQ[ 10*(10^(2n) - 1)/11 + 1], Print[ n ] ], {n, 0, 1505} ]

%t Position[Table[FromDigits[PadLeft[{9,1},2n,{9,0}]],{n,1510}], _?PrimeQ]// Flatten (* _Harvey P. Dale_, Nov 02 2017 *)

%o (Python)

%o from sympy import isprime, prime

%o def afind(limit, startk=1):

%o s = "90"*(startk-1)

%o for k in range(startk, limit+1):

%o if isprime(int(s+"91")):

%o print(k, end=", ")

%o s += "90"

%o afind(400) # _Michael S. Branicky_, Jan 13 2022

%Y Cf. A001562.

%K nonn,more,hard

%O 1,1

%A Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 22 2000

%E More terms from _Michael Kleber_ and Harvey Dubner (harvey(AT)dubner.com), May 22 2000

%E _Ignacio Larrosa CaƱestro_ reports that the 1068 term has now been established to be a prime using Titanix 1.01, Oct 23 2000

%E a(11)-a(12) from _Michael S. Branicky_, Jan 13 2022 using A001562